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 A B S T R A C T

Medical data, hospital patient-specific data, are highly sensitive to privacy and are essential for research in 
the biomedical field. Although there are many new approaches to creating databases that ensure data must 
be FAIR and GDPR compliant, these approaches require the intervention of secured data handlers. To address 
this gap, this study investigates and designs a standardized Federated Learning (FL) architecture for medical 
data. Specifically, we examine traditional and novel methods for preprocessing, handling, and utilizing such 
data in FL. We develop ‘‘FedDeepInsight’’, a novel data transformation framework that enables tabular data 
augmentation and transformation into image data prior to neural network training and FL. Additionally, we 
analyze how the type of dataset influences the performance of federated learning algorithms and machine 
learning models in terms of accuracy and efficiency. Our results indicate that FedAvg is the most reliable 
aggregation algorithm, providing superior accuracy, stability, and convergence, and FedYogi is also viable with 
well-tuned hyperparameters. For privacy protection, we recommend Differential Privacy (DP) with calibrated 
noise multipliers and initial upper and lower bounds for stability. Ultimately, we emerge as a promising 
solution for secure, privacy-preserving federation learning in healthcare.
1. Introduction

In recent years, machine learning algorithms are being used for 
disease detection, drug discovery, and to improve the overall efficiency 
of health care [1]. They require a substantial amount of data to perform 
effectively. Unfortunately, in the field of healthcare, medical data 
from patients that contain sensitive information is subject to privacy 
regulations [2]. One of the most relevant is the General Data Protec-
tion Regulation (GDPR), a comprehensive data protection law in the 
European Union that aims to protect the personal data and privacy of 
individuals [3]. According to Recital 26 of the GDPR, if the data is truly 
anonymized, it can be shared, meaning it must be processed in such a 
way that individuals can no longer be identified, directly or indirectly. 
Data anonymization techniques such as k anonymity, l diversity, and t 
closeness offer some level of privacy protection, but often fall short of 
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the rigorous standards of GDPR due to potential reidentification risks, 
their inability to fully anonymize data in all contexts, and the evolving 
nature of reidentification techniques [4,5]. Additionally, new methods 
such as the FAIR compliant database can offer some solutions, but it still 
requires careful implementation to ensure that all data usage complies 
with legal and ethical standards [6,7]. Medical institutions, such as 
the University Medical Center (UMC), are often labeled ‘‘data silos’’ 
due to their restricted data sharing capabilities [8] and often require 
many steps until research data is available [9–11]. To enable effective 
use of data from such ‘‘data silos’’, it is imperative that a privacy-
compliant approach and its relevant data processing tools are deployed 
within the medical infrastructure. Federated learning (FL) is one such 
novel approach to address these challenges. This framework has gained 
traction due to its potential application in healthcare [12]. FL en-
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ables multiple parties to collaboratively train their machine learning 
models without the need to share raw data externally. Using multiple 
decentralized devices or servers, the models are trained with their 
own local data [5]. After training the local models, the parameters 
or gradients are transferred to a central model. The central model 
uses aggregation methods such as Federated Averaging (FedAvg) to 
combine these characteristics to improve the central model [13]. After 
aggregation, the updated model is sent back to each local device. This 
process continues to iterate, each iteration improving the models. This 
gives computational models the ability to make use of these research 
data and even train on these data without compromising privacy [14].

The current literature on FL lacks comprehensive studies on the 
development of a standardized FL architecture tailored to medical 
data. Research introducing a framework frequently lacks a thorough 
examination of the specifics of complex designs. There is a limited 
amount of literature focused on analyzing individual elements within a 
framework that prioritizes safeguarding personal patient information. 
When designing a Federated Learning Module (FLM), various com-
ponents such as data distribution, privacy mechanics, communication 
architecture, FL algorithms, and model specifications need careful con-
sideration [13]. A significant disparity between the models available 
for federated learning using imaging and tabular datasets is notice-
able. Although image datasets have been extensively studied, tabular 
datasets, common in medical data, remain underutilized. Addressing 
this research gap is essential, as much medical data, including omics 
data, questionnaire reports, and medical summaries, is tabular in na-
ture. Existing studies are heavily focused on image data, leaving a 
gap in the utilization of tabular data [15]. To address this gap, this 
study will investigate traditional and novel methods for using tabular 
data in federated learning. Specifically, we will explore two distinct 
approaches: using TabNet, a neural network architecture designed for 
tabular data. Additionally, we will convert tabular data into images 
with FedDeepInsight to potentially enhance the performance of the 
model [16,17].

Our research aims to develop an effective federated learning ar-
chitecture for all types of medical data, achieving a balance between 
model performance and patient privacy. We will evaluate machine 
learning models, aggregation algorithms, and dataset types (image vs. 
tabular) to determine their impact on accuracy and efficiency. Essential 
security and data protection measures will be implemented, and we will 
refine the architecture to create a blueprint for a Federated Learning 
Module (FLM) for future applications.

2. Related work

Owing to heightened scrutiny and privacy regulations, medical in-
stitutions are prohibited from freely exchanging information with each 
other [18]. This unique predicament of data isolation has resulted in 
the terms ‘data silos’ or ‘data islands’ being attributed to hospitals and 
similar institutions. To achieve optimal performance, machine learning 
models require access to extensive and varied datasets. However, under 
the present conditions within the medical domain, these models cannot 
reach their full potential. Federated learning is proposed as a viable 
solution to mitigate privacy concerns of data silo. It enables machine 
learning models to be trained collaboratively on decentralized devices 
or servers without the need to share sensitive data [19]. As a relatively 
novel concept, there is a lack of comprehensive and standardized 
solutions specifically created to address the challenges inherent in the 
healthcare sector.

2.1. Data distribution

When designing a federated learning architecture, there are gener-
ally three approaches that can be used: Horizontal Federated Learning 
(HFL), Vertical Federated Learning (VFL) and Federated Transfer Learn-
ing [18,20]. We will discuss only the first two approaches due to 
resource limitations.
2 
2.1.1. Horizontal federated learning
In Horizontal Federated Learning (HFL), each institution holds data 

from the same feature space, but has a different sample space [20]. 
For instance, consider two hospitals: Hospital A and Hospital B. These 
hospitals are located in different countries, and both are researching 
prostate cancer and want to train machine learning models. Their 
patients are unlikely to overlap, but the feature space will be the same. 
As local data sets share a common feature space, the parties involved 
can independently train their local models using the same architecture. 
Updating the global model becomes straightforward by averaging the 
parameters across all local models.

2.1.2. Vertical federated learning
Unlike HFL, in vertical federated learning (VFL), the parties possess 

data with different characteristics, but there is usually overlap in the 
sample space [20]. Consider two hospitals, Hospital A and Hospital 
C, located in the same city. Hospital A has detailed patient records, 
including demographic information and medical history, while lacking 
specific diagnostic details, such as MRI images. On the other hand, Hos-
pital C specializes in diagnostic imaging, but has limited demographic 
and medical information. Vertical Federated Learning involves the ag-
gregation of distinct features from multiple parties and the computation 
of training loss and gradients in a privacy-preserving manner.

2.2. Data privacy

When it comes to FL, the preservation of privacy is of utmost impor-
tance [5,13]. Even if raw data are not shared, there is still a potential 
risk of indirectly leaking sensitive data through exposure to information 
when exchanging model parameters. Several techniques can be used 
to protect sensitive information. A popular method to protect data 
privacy is Differential Privacy (DP) [21]. There are several approaches 
to implementing DP, but we will focus on central DP and local DP. Local 
DP is applied on the client side before any information is sent to the 
server, ensuring that updates sent to the server do not reveal any details 
about the client data. In contrast, the server applies the central DP to 
prevent the aggregated model from disclosing information about the 
data of each client [22]. Central DP consists of two key components: 
clipping client updates and adding noise to the aggregated model. 
When noise or randomness is added to the learning process, individual 
data points are protected. However, adding noise can negatively affect 
the accuracy. The challenge lies in striking a balance between robust 
privacy protection and maintaining the predictive performance of the 
model.

2.3. Communication systems

Communication systems architecture play an important role in the 
coordination of model updates between servers or devices, directly 
affecting the effectiveness of FL. There are two types of communication 
architecture: centralized and decentralized [5,23]. In a centralized 
architecture also known as the ’Client–Server architecture’, all infor-
mation is passed through a central server which acts as a coordinating 
entity. The central server manages the communication and synchro-
nization of the clients and trains the global model by aggregating all 
the parameters of the local model from each device or client. Due 
to its simplified nature, this architecture has been widely adopted in 
FL studies [13]. However, there are concerns that the central server 
becomes a vulnerability point because it contains all data [24].

A decentralized architecture, also known as the Peer-to-Peer archi-
tecture, does not rely on a central server. For this architecture, each 
client communicates directly with the others in the network [23]. Each 
client trains its model locally and updates its model using information 
from other clients [5]. In this way, all data remain localized on individ-
ual devices, reducing the risk of data exposure. However, designing a 
decentralized architecture can be challenging; coordinating communi-
cation and synchronization among multiple devices can become more 
complex to implement [13].
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2.4. Machine learning models

Medical data collected from different hospitals may have different 
distributions due to variations in the demographics of patients and 
treatment protocols [25]. Also known as Non-Independent and Non-
Identically Distributed (non-IID) data, dealing with this type of data is 
challenging [24,26]. As such, research is imperative for handling this 
type of data. Parametric and non-parametric ML models are often used 
in FL. Due to the differences in their training mechanisms, both types 
of model exhibit distinct behavior when dealing with non-IID data, 
resulting in different performance.

2.4.1. Parametric models
Non-IID data can affect the performance of parametric models, espe-

cially in HFL systems due to label distribution imbalances. It can cause a 
divergence between the local model and the global model [27]. Neural 
networks (NN) are widely adopted parametric models, due to their 
amazing performance in many areas, among them image classification 
and speech recognition [28,29]. Linear models such as linear regression 
and logistic regression are also commonly used in FL studies because 
they are relatively easier to implement. However, due to the simplicity 
of the models, individual private data is more likely to be reverse 
engineered or leaked [30].

2.4.2. Non-parametric models
Non-parametric models such as Decision Trees, Gradient Boosting 

Decision Trees (GBDT), and Random Forest are also commonly used in 
the field of FL. Because of their good performance in classification and 
regression tasks. GBDT has especially become popular in both HFL and 
VFL systems [31]. However, a potential downside is that these models 
can be computationally intensive.

2.5. Federated learning algorithms

There are various FL algorithms designed to aggregate the local pa-
rameters: FedAvg, FedProx, SCAFFOLD, FedMedian, FedOpt, FedYogi 
and more [13,32–34]. Federated averaging, or FedAvg, is one of the 
most widely adopted and straightforward algorithms, which works 
by computing averages of the weights of local models by multiple 
clients. FedProx addresses the challenges presented by non-IID data by 
limiting local changes and has been shown to be effective in privacy 
protection [33]. FedProx extends FedAvg by introducing a proximal 
term 𝜇 that can help stabilize the training process. FedYogi optimizes 
the training process by addressing common challenges in federated 
learning, such as communication efficiency, model convergence, and 
robustness to data heterogeneity among different clients. Each algo-
rithm possesses unique properties, and this research aims to determine 
the most suitable one for the module [35].

2.6. Data types

There are various types of data used in machine learning, but tabu-
lar data and image data stand out due to their widespread applications. 
Understanding how these two types of data behave in the context of 
federated leaning can provide a deeper insight into their strengths and 
challenges in the medical field.

Image data has been favored in FL because of its complexity and 
rich information content. It consists of pixel values arranged in grids, 
making it inherently high-dimensional and unstructured. Convolutional 
Neural Networks (CNNs) are the primary models used for image data 
because they efficiently capture spatial hierarchies through convo-
lutional and pooling layers. However, the large size of the image 
data imposes significant computational and communication costs. It 
should be noted that ‘image’ data is a broad category, covering dif-
ferent modalities such as ultrasound, MRI and X-ray, each with distinct 
characteristics and processing needs.
3 
Tabular data structured into rows and columns is common in the 
field of healthcare. In FL, tabular data presents some challenges. One 
major issue is the non-IID nature of data across different clients. This 
heterogeneity can complicate the training process and requires special-
ized aggregation methods to ensure that the global model performs 
well across diverse datasets. Although neural networks can be used for 
tabular data, traditional models often perform better. The structured 
nature and typically smaller size of tabular data compared to image 
data result in lower computational and communication costs.

2.7. TabNet

TabNet, is a new approach designed to handle tabular data. Tra-
ditional deep learning models often struggle with tabular data due to 
overparameterization and lack of appropriate inductive biases [16]. 
Typical deep learning models can learn from relational patterns from 
images or text, which is not always the case for features in tabular data. 
TabNet, on the other hand, utilizes a unique approach that combines 
the strengths of tree-based learning and deep neural networks. This 
hybrid method not only improves the model performance but also 
enhances interpretability by calculating the importance of the features. 
This process relies on several key components for the architecture to 
function. Similarly to how a Decision Tree selects a feature, the feature 
transformer and attentive transformer work together to select and pro-
cess features at each decision step. The feature transformer processes 
the input features, while the attentive transformer generates masks that 
highlight the most salient features. By focusing only on these selected 
features, TabNet effectively identifies the decision boundaries on the 
manifold. This approach is particularly well-suited for tabular data with 
sparse characteristics. Similarly, TabNet’s Encoder operates by using 
the output of the previous Encoder as feedback to update the feature 
masking for the next Encoder. This structure functions as an ensemble 
of encoders, mirroring the ensemble of trees in a tree-based model, 
allowing for progressive refinement and improved learning outcomes.

2.8. DeepInsight

Continuing the theme of using the capabilities of deep learning 
methods to train tabular data, we encountered a variety of innovative 
techniques during our research. One such method is DeepInsight, a 
technique that transforms tabular data into images, enabling the ap-
plication of deep learning models used in image processing [17]. The 
first step is normalizing the tabular data to ensure that all features 
are on a comparable scale, crucial for accurately representing feature 
values as pixel intensities in images. The features are then mapped to 
a 2D grid using dimensional reduction techniques such as t-SNE (t-
Distributed Stochastic Neighbor Embedding) or Principal Component 
Analysis (PCA). When transforming the high-dimensional data into a 
2D grid (image), each feature is assigned a pixel location. This process 
can sometimes lead to multiple features being mapped to the same 
pixel, causing collisions. These collisions can degrade the quality of 
the transformation and the subsequent model’s ability to accurately 
learn and generalize. After mapping, each row of the tabular dataset 
is converted into a corresponding image, where each pixel value re-
flects the normalized value of a specific feature for that sample. This 
creates a visual representation of the tabular instance, allowing CNNs 
to process the data using their architectures. As mentioned earlier, 
CNNs with their hierarchical feature extraction capabilities can learn 
complex patterns and interactions within the data, potentially leading 
to improved predictive performance compared to traditional methods. 
Although this transformation enables effective learning, it complicates 
interpretability since the spatial structure does not directly reflect the 
original feature layout.
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3. Methodology

3.1. Data

For the image dataset, we decided to use a COVID-19 radiography 
dataset containing X-ray images of the chest area. This dataset includes 
three classes: positive cases of COVID-19, normal cases, and viral 
pneumonia cases. The dataset consists of a total of 317 X-ray images, 
with 66 designated as test images and 251 as training images. This 
dataset was chosen because it is highly relevant for current medical 
challenges, includes diverse and high-quality images, and is publicly 
accessible on kaggle [36].

In the field of Federated Learning, little research has been done on 
tabular data compared to image data [37]. To address this gap, we 
used our models on different types of tabular data. Using Supabase 
(Supabase LLC, USA, https://supabase.com/), we extracted and down-
loaded the tabular data in CSV format. The first dataset is a breast 
cancer dataset obtained from the UCI Machine Learning Repository. 
This dataset is derived from digitized images of fine needle aspirates 
(FNA) of breast masses, describing the characteristics of the cell nuclei 
present in the images, resulting in a dataset with 30 features. The class 
distribution includes 357 benign cases and 212 malignant cases. This 
data set was chosen due to its relatively small size, balanced class 
distribution, and the presence of numerical values in all column of 
characteristics [38]. In the preprocessing steps, we removed all white 
spaces from the columns names to prepare the dataset for TabNet. 
Additionally, we label encoded the classification column.

For the second tabular dataset, our objective was to predict stroke 
occurrences based on various parameters of the patient. This dataset 
is particularly relevant given the high global impact of stroke, as 
highlighted by the World Stroke Organization (WSO), which states 
that stroke is the second leading cause of death globally, responsible 
for approximately 11% of total deaths [39]. The dataset comprises 12 
columns, of which only two contain continuous values. The remain-
ing columns are binary or categorical. The ‘bmi’ column had many 
missing values, so we replaced them with the median value within 
each age category. Each category was defined by a 5-year age range. 
Additionally, the categorical columns got encoded. The original dataset 
is highly imbalanced, with 249 stroke cases out of 5110 total cases. 
To address this imbalance, we employ SMOTE techniques to generate 
synthetic samples during pre-processing. This approach has also been 
explored in some federated learning studies to handle imbalanced data 
across distributed clients [40]. A preliminary evaluation comparing 
the original dataset and the SMOTE enhanced version is provided in 
Appendix C.2, demonstrating improvements in precision, recall and F1-
score, which guided our decision to incorporate SMOTE in our pipeline. 
All the tabular datasets mentioned were divided into an 80/20 train-test 
split.

3.2. Approach

In terms of our approach, we examined the key components needed 
for designing an FLM through simulation. We selected the pathways 
that align closely with our design. For example, consider two pathways: 
Pathway 1, an FL architecture without DP using FedAvg for parameter 
aggregation, and Pathway 2, an architecture with DP using FedProx 
for aggregation. From the literature, we assume that Pathway 1 will 
have a high accuracy performance but is likely to leak patient data. 
However, Pathway 2 is less likely to leak patient data, but accuracy 
will suffer significantly [13,26,30]. If the initial selection did not meet 
our requirement, we proceeded to the next pathway. Through trial and 
error, we refined and identified the optimal FLM design adapted to 
medical data. All of our experiments were conducted using Horizontal 
Federated Learning (HFL) because it simplifies the process and is 
well supported by the frameworks we are using. Our priority is to 
select a flexible framework that offers security measures. In addition, 
4 
it should be able to support different ML models and be scalable to 
ensure smooth implementation in a real-world setting. Furthermore, 
the framework should offer clear documentation that facilitates eas-
ier adoption by other parties. Based on these requirements, we have 
chosen the appropriate framework and use the Snellius supercom-
puter (SURF, Amsterdam, Netherlands; https://www.surf.nl/en/dutch-
national-supercomputer-snellius) to run intensive tasks such as image 
training.

3.3. Security method

The primary objective is to improve privacy and security. As men-
tioned earlier, we are integrating Differential Privacy and other novel 
methods into the module. For this investigation, we used central dif-
ferential privacy because it provides a good balance between privacy 
and utility. With the central differential privacy algorithm, we can 
choose whether to use server-side or client-side cutting in the first 
phase [41]. Each approach has its pros and cons. The first approach 
has the advantage of enforcing a uniform clipping on all clients and 
reducing communication overhead for clipping values. However, it 
increases the computational load on the server. The second approach 
reduces computational load, but there is a lack of centralized control. 
We decided to use server-side clipping with adaptive clipping because 
it allows for consistent and uniform application of clipping across 
all clients. Adaptive clipping dynamically adjusts the clipping values 
according to the data distribution, which can lead to better model 
performance and more efficient privacy management.

In the paper by Andrew et al. which this algorithm is based, they 
used noise multipliers (𝑧) between 0.0 and 0.1 [42]. The results showed 
that the performance of the model begins to decrease significantly with 
values greater than 𝑧 = 0.1. As such, we decided to use the smallest 
noise multiplier after 0 and the largest noise multiplier in the paper. 
Thus, we experimented with 𝑧 = 0.01 and 𝑧 = 0.1, to get a sense of a 
lower and upper bound. If the model demonstrates good performance, 
we consider adjusting the upper bound to further optimize the results. 
While a full grid search or sensitivity analysis would provide a more 
exhaustive view, our goal in this phase was to establish whether the 
model retains acceptable performance under practical differential pri-
vacy settings. These two values were selected to represent meaningful 
extremes within the empirically validated range, offering initial insight 
into the algorithm’s robustness. If promising results are observed, we 
consider these experiments a starting point for more granular tuning 
in future work. The other parameters of the algorithm were left at 
their default values as recommended by Andrew et al. All runs with 
differential privacy were performed using FedAvg, the algorithm is 
simple yet highly effective. Its straightforward approach makes it an 
excellent baseline for evaluating differential privacy methods and can 
serve as a starting point for researchers.

3.4. Model selection

3.4.1. CNNs
Selecting an appropriate ML model for FLM is a critical step in 

ensuring the effectiveness and performance of the module. Our module 
allows facilities to train various ML models based on the datasets. For 
the image dataset we chose CNNs due to their proven success and 
efficiency in handling image data. It is also possible to use a pre-
trained model, according to Kieffer et al. pre-trained models typically 
achieve higher accuracy than those that are not pre-trained [43]. To 
maintain simplicity, we implemented a standard CNN model consisting 
of 2 convolutional layers, 2 max pooling layers, and 3 fully connected 
layers. We set the number of local epochs to 5. As for FedDeepInsight, 
we used the SqueezeNet 1.1 architecture, consistent with the original 
paper, to train the converted images. We will discuss its integration and 
performance in greater detail in a later section.

https://supabase.com/
https://www.surf.nl/en/dutch-national-supercomputer-snellius
https://www.surf.nl/en/dutch-national-supercomputer-snellius
https://www.surf.nl/en/dutch-national-supercomputer-snellius
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Fig. 1. Federated learning approaches and FedDeepInsight. (A) Cross-SILO Federated Learning. (B and C) FedDeepInsight Simulated Scenario vs. Real-Life Scenario 
Comparison, respectively.
3.4.2. Logistic regression
As for the tabular datasets we chose four different models for the 

investigations. Two traditional ML-models and two novel approaches. 
The chosen models are Logistic Regression (LR), XGBoost (XGB), Tab-
Net, and DeepInsight. We chose LR for its simplicity and interpretabil-
ity, linear models provide a strong baseline for comparison [44]. Re-
garding the hyper parameters, we chose L2 regularization as penalty to 
help prevent overfitting. We enabled the warm_start parameter to True
to retain the previous weights and avoid reinitializing them.

3.4.3. XGBoost
XGB was selected for its high performance and robustness; it is 

known for outstanding results in tabular data. For the XGB model, we 
used NVFlare to carry out the investigations. The XGB model in NVFlare 
offers many options, such as data splits(uniform, linear, exponential, 
squared) and tree-based(cyclic, bagging) training. After investigating 
all the different configurations, we chose a uniform data split with the
bagging model. We used a uniform data split to maintain consistency 
with the other models and use bagging because of its high accuracy.

3.4.4. TabNet
The new TabNet approach with the use of attention mechanisms and 

interpretable embeddings for feature selection allows for end-to-end 
learning, so the user can directly handle raw data, which can reduce 
preprocessing needs. This can save time and simplify the workflow of a 
researcher. We used the TabNet TensorFlow implementation [16]. For 
the hyperparameters, we applied the settings provided in the GitHub 
example. The only changes we made were dataset-specific parameters, 
such as the list of column names and the number of classes.
5 
3.4.5. FedDeepInsight
Finally, we chose DeepInsight for its innovative method of convert-

ing tabular data into images, enabling the use of CNNs to uncover 
complex patterns and relationships that traditional models might miss. 
To develop our method, FedDeepInsight, we implemented several steps. 
In the original method, when the entire dataset is transformed at once, 
the DeepInsight image transformer captures the global structure of 
the data. This results in a consistent mapping where relationships and 
variances between all data points are considered; see Appendix  B.1. If 
the dataset is split into parts and each part is transformed separately, 
the image transformer only captures the local structure of each part. 
This can lead to different mappings, as the relationships between data 
points in one part are not seen in the context of the other part. The 
images generated from separate transformations may not be consistent, 
affecting the ability of the model to generalize.

We reached out to the authors to inquire whether it was possible to 
minimize the loss caused by feature-to-pixel mapping collisions. They 
suggested that we could try changing the discretization method, even 
though it had not been tested. Discretization methods are used to map 
features (data points) to specific pixel locations. We decided to experi-
ment with Linear Sum Assignment (LSA) and Coordinate Binning (BIN) 
as discretization methods. An in-depth explanation of these methods 
can be found in the source code of DeepInsight’s image transformer. 
Subsequently, we examined the source code of two-dimensionality 
reducers: t-SNE and PCA. The first reducer was used in their GitHub 
example, and upon examining the t-SNE source code, we observed that 
some randomness might still be involved even when setting a random 
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state seed for reproducibility. This is important because in theory small 
variations can generate completely different images. In centralized 
training, this variability is acceptable. However, in a federated learning 
environment, it is crucial that each client has the same parameters. As 
such we decided to look into linear dimensionality reducers instead, 
such as PCA, which were not investigated in the original paper [17].

Regarding the process of incorporating DeepInsight into our FL 
pipeline, the initial steps were similar to the original approach. First, we 
normalized the data. Then, we created a reducer object for the image 
transformer. As mentioned earlier, we experimented with t-SNE and 
PCA reducers. Starting with t-SNE, the perplexity hyperparameter was 
set to the number of features in the dataset minus one. The other settings 
remained the same as in their example. For PCA, we set n_components
to 2. For both reducers, the random state was set to 42. Subsequently, 
we initialized the image transformer with the reducer and set the pixel 
size to 227 × 227. The image transformer was then trained using the 
training data. Once the transformer was trained, it was applied to both 
the training and test datasets to convert the tabular data into images. 
Examples of transformed images are illustrated in Appendix  B.2. The 
transformed images were then converted into tensors. Tensor data 
was trained with the SqueezeNet 1.1 model in our federated learning 
pipeline [17].

3.5. FL algorithms selection

FedAvg is a widely used algorithm and operates by averaging the 
model updates of the clients; as a foundational algorithm, it serves as a 
standard benchmark in this study to compare it with other algorithms. 
FedProx addresses data heterogeneity among clients and can mitigate 
non-IID data by incorporating the proximal term. We conducted in-
vestigations with (𝜇 = 0.1, 1, 2), similar values were used at the 
Flower baseline [41]. Finally, we decided to use FedYogi because it 
has demonstrated superior performance on several benchmarks, often 
outperforming other federated optimization algorithms in terms of 
accuracy and convergence speed.

3.6. Evaluation

We evaluated the performance based on several factors including 
accuracy per round, the impact of increasing the number of clients on 
model performance, and the convergence behavior of the model under 
different configurations. Specifically, we analyze how the accuracy 
evolves with each training round and assess the convergence rate and 
stability of the model as more clients participate in the training process. 
As for our new method, FedDeepInsight, we also need to evaluate 
its viability in real-life settings. In a simulated federated learning 
environment Fig.  1B, the tabular data to image transformation occurs 
centrally, meaning that the transformation of the train set and the 
test set is performed before distributing them to virtual clients. This 
approach is not feasible in real-life settings and defeats the purpose of 
federated learning. The process in a real world scenario is illustrated 
in Fig.  1C. Earlier, we discussed the randomness that a dimensionality 
reducer like t-SNE can introduce and how the mappings can differ if 
the dataset is split and transformed separately. To evaluate the extent 
of this randomness, we conducted model training on two reducers: t-
SNE and PCA. First, we applied the t-SNE and PCA transformations 
to the train set and trained the data in our FLM, saving the trained 
model from each round. After model training, we used the saved global 
models to make predictions on synthetic datasets generated from the 
two original datasets. By doing this, we can evaluate the predictions 
from the synthetic dataset. Our aim is to see how well the global 
FedDeepInsight model can generalize to new data with the same format 
and hyperparameters, simulating real-world scenarios. If the accuracy 
remains consistent, it indicates minimal impact of randomness; if not, 
this would highlight the challenges posed by its randomness and under-
score the need for careful consideration when choosing dimensionality 
reduction techniques.
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To this end, we included the trustworthiness score as a comple-
mentary metric, measuring how well the local structure of the high-
dimensional data is preserved in the lower-dimensional space [45]. 
A high trustworthiness score indicates that the neighborhood rela-
tionships are maintained, which is particularly important in federated 
learning scenarios where each client may operate on only a small local 
subset of the data. In addition to local structure preservation, we also 
evaluated the preservation of global structure using Pearson and Spear-
man correlation scores between pairwise distances in the original and 
reduced spaces [46]. Spearman captures monotonic relationships and is 
better suited for assessing structural similarity in nonlinear embeddings 
such as t-SNE. While Pearson evaluates linear correspondence and is 
often more informative in linear methods like PCA. By incorporating 
these metrics into our evaluation, we gain a clearer understanding of 
how the choice of dimensionality reducer impacts not just accuracy, but 
also the consistency and reliability of data representation across clients.

4. Results

4.1. Image data

In this section, we present the performance analysis of three feder-
ated learning algorithms: FedAvg, FedProx and FedYogi on the COVID-
19 X-ray dataset (Fig.  2A). The accuracy of FedAvg shows a steady 
increase initially, stabilizing around the 100th round. The accuracy 
remains consistently high and stable throughout the remaining rounds, 
with minor fluctuations around the 85%–90% range for both 5 & 20 
clients. FedProx is less stable, showing significant fluctuations through-
out the rounds. Based on the density plot in Appendix  A.2, we chose 
𝜇 = 0.1 as the proximal term. Despite initial improvement, accu-
racy experiences frequent and pronounced drops. The accuracy varies 
widely, generally between 60% and 90%. This is the case for both 
client configurations. The FedYogi algorithm also shows substantial 
variability, although it generally stabilizes after the initial rounds. The 
accuracy with 5 clients fluctuates between 70% and 90%, with some 
notable peaks reaching around 93%. With 20 clients, FedYogi shows 
improved stability compared to the 5-client configuration. Although 
there are still fluctuations, they are less pronounced, and the accuracy 
generally stabilizes around the 80%–90% range after the initial rounds. 
In the density plot of Fig.  2A, we can observe the differences in 
the accuracy distribution of the three federated learning algorithms. 
FedAvg has the highest density, indicating that it is the most reli-
able and stable algorithm in this context, consistently providing high 
accuracy with minimal fluctuations. FedProx, despite its potential, is 
hindered by significant instability, making it less suitable for consistent 
performance. FedYogi & FedProx offers high potential, but requires 
further optimization to ensure stability. It is evident from Appendix 
A.1 & A.2, that careful selection of the 𝜇 parameter can contribute to 
FedProx performance.

4.2. Tabular data

To address the mentioned research gap, our investigations with 
tabular data were more extensive, particularly with regard to Fed-
DeepInsight. First, we compared the performances of the four proposed 
models. The performance of the models is illustrated in Fig.  2B & 2C. In 
the 5-client configuration with the cancer dataset, Logistic Regression 
(LR) initially increases rapidly, reaching around 90%. The accuracy 
stabilizes just after 50 rounds at around 88% with minimal fluctuations. 
The accuracy of TabNet also increases rapidly in initial rounds, stabiliz-
ing around 92% after approximately 150 rounds. Performance remains 
consistent with no fluctuations. The accuracy of FedDeepInsight shows 
significant fluctuations in the early rounds but decreases significantly 
after about 30 rounds. The model continues to fluctuate throughout the 
process, with the delta between the fluctuations decreasing while the 
accuracy increases, eventually reaching the heights of the XGB model 
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Fig. 2. (A) Accuracy over Rounds experiments with three FL-algorithms on the image dataset, where each color represents a different algorithm. The density plot 
in the lower right corner shows the distribution of accuracy for each FL algorithm. (B and C) Left side: Accuracy over rounds for various models on tabular datasets, 
with each color representing a distinct model. The round number is represented on a logarithmic scale. Right side: Swarm plot to illustrate the distribution of 
accuracy values for each model.
and outperforming the other two models. The accuracy of XGBoost 
(XGB) remains near-perfect, around 98%, throughout the rounds. For 
the stroke data set, the accuracy of the logistic regression has the lowest 
accuracy among all models at around 72%. The model converges after 
round 16 with minor fluctuations during the rest of the training process. 
The accuracy of TabNet achieves a higher accuracy than the previous 
model, reaching a peak around 75%. The model remains consistent 
throughout the training process with zero fluctuations. FedDeepInsight 
initially has the most unstable graph of all the models but quickly 
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surpasses the previous models in terms of accuracy before the first 
10 rounds, increasing to around 84% accuracy. XGBoost (XGB) model 
shows a steady increase in accuracy, maintaining around 95%, achiev-
ing the highest accuracy among all models. It is also the most stable 
model.

In the 20-client configuration for the cancer dataset, the accuracy 
of logistic regression shows a modest increase in the initial rounds 
compared to the others, stabilizing after 160 rounds with minor fluctu-
ations between 90 and 93%. TabNet model experiences an initial rapid 
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Fig. 3. (D, E, F) Experiments on implementing differential privacy in the models. Rain plots visualize the spread of accuracy distribution, with each color 
representing a different noise multiplier setting (z). (G) Accuracy over rounds performances for FedDeepInsight’s saved model on synthetic datasets. The 𝑥-axis 
represents rounds, visualized in increments of 10 rounds. The colors in this plot are arbitrary and do not represent any specific variable.
increase, which also stabilizes after 160 rounds between 90%–91%. 
FedDeepInsight model shows significant early fluctuations, but the 
delta of the fluctuations becomes minimal just before round 50. The 
accuracy then climbs steadily, reaching 98%, outperforming XGB in 
some rounds. XGBoost model still maintains a near-perfect accuracy 
at 96% throughout the rounds, demonstrating consistent high per-
formance with the best stability. For the stroke dataset, the logistic 
regression model stabilizes after 20 rounds around 72%. Performance 
remains stable with minimal fluctuations. TabNet model shows a rapid 
initial increase, stabilizing just before 20 rounds. Performance remains 
stable from round 40, with no fluctuations, and accuracy converges 
around 75%. FedDeepInsight model shows a gradual improvement in 
stability and accuracy over the rounds. It outperforms the two models 
mentioned above, achieving around 83% accuracy with minor fluc-
tuations. XGBoost model demonstrates a steady increase in accuracy, 
with a value around 95%. Shows consistent and high performance 
throughout the rounds with no fluctuations.

4.2.1. Analysis
The cancer dataset comprises numerical columns and contains 569 

rows. From the graph, it is evident that all models achieve high accu-
racy, but exhibit fluctuations and minor instability particularly within 
the first 100–150 rounds. The relatively small size of the dataset may 
contribute to the instability observed in model training. Furthermore, 
the numerical nature of the data likely contributes to the high perfor-
mance seen in these models. However, the stroke dataset comprises 
mixed types, primarily categorical, and contains approximately 9700 
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rows. All models exhibit much greater stability with minimal fluctua-
tions, indicating that a larger dataset contributes to the stability and 
convergence of federated learning training. In this dataset, XGBoost 
outperforms the other models, maintaining the highest accuracy. The 
mixed-type features in the dataset may contribute to the comparatively 
lower accuracy observed in the other models. In both datasets, XGBoost 
demonstrates exceptional performance and stability, making it a highly 
reliable model for both cancer prediction and stroke predictions. Tab-
Net and logistic regression show consistent performance, but generally 
lower accuracy compared to the other two models. Our FedDeepInsight 
model performed competitively, at times surpassing XGBoost in the 
20-client configuration. Although both TabNet and FedDeepInsight 
leverage deep neural networks, FedDeepInsight achieved higher peak 
accuracy in all situations, which may justify its use when maximum 
predictive performance is a priority especially in settings where deep 
architectures can be supported.

4.3. Differential privacy results

For the tabular data, we show the results of implementing DP 
with Logistic Regression and DeepInsight. For image data, we used 
convolutional neural networks (CNN). The results for both tabular and 
image data are presented in Figs.  3D, 3E, and 3F. This comparison 
allows us to observe how these models behave under DP and how 
various configurations influence the results. The performance of the 
logistic regression model under DP was poor across both datasets with 
the selected configurations. In each scenario, the models with DP 
exhibited high variability and did not show a clear improvement trend, 
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with a mean hovering around the precision 50%. Furthermore, some 
configurations were abruptly stopped due to errors, preventing them 
from reaching the desired end-round. Based on overall performance, 
this would not have made a significant difference.

In CNN model investigations that compared FL algorithms, FedAvg 
demonstrated the most stable performance compared to FedYogi and 
FedProx. According to the study by Korkmaz et al. FedAvg also showed 
good overall performance, making it a reliable choice for federated 
learning on medical datasets [47]. Thus, we decided to conduct the DP 
investigations using FedAvg with a noise multiplier (z) of 0.1 & 0.01 . 
The accuracy from the model is distributed sporadically between 25% 
and 80%, with an average of around 45% for z = 0.01 and even lower 
for z=0.1. Given the instability observed in the preliminary training 
produced in Fig.  2A, similar trends were expected in the DP runs.

The DP implementation appears to work better with the DeepInsight 
model, demonstrating good accuracy across various configurations, 
unlike the previous models. Examining Figs.  3D, 3E, and 3F, the model 
using a noise multiplier of 0.01 shows that the cluster is concentrated 
around 88%. In contrast, in the stroke dataset, the same noise multiplier 
results in a cluster around 80%. A noise multiplier of 0.1 shows that the 
cluster is more spread between 60%–75% in the cancer dataset, while 
in the stroke dataset it is concentrated at 50%. Like the paper suggests: 
a lower noise multiplier might allow for better model performance but 
with less privacy [22].

4.4. Dimensionality reducers

In this section, we evaluate and compare PCA and t-SNE with 
respect to both structure preservation and model accuracy. First, we 
assess structure preservation by examining local and global fidelity. 
Local structure preservation is measured using trustworthiness scores 
across varying values of k [45]. As shown in Fig.  4 for the stroke 
dataset, t-SNE excels at preserving local neighborhoods (high trustwor-
thiness at low k), but its performance declines rapidly as k increases, 
indicating weaker global consistency. In contrast, PCA exhibits more 
stable trustworthiness scores in k, suggesting better overall retention 
of the global structure of the data.

To complement this analysis, we computed Spearman and Pearson 
correlations between pairwise distances in the high-dimensional and 
reduced spaces (Table  1). PCA consistently outperforms t-SNE on both 
datasets, confirming its superior ability to preserve global relationships 
and supporting the trends observed in the trustworthiness curves.

Next, we examine how these structure preservation differences 
translate into downstream model accuracy. As discussed in the method-
ology, we are only interested in seeing how well the saved global 
models can generalize to a new dataset. Therefore, we ran the models 
up to the round where the preliminary accuracy in Figs.  2B & 2C 
plateaued. Based on the figures, this occurs at 150 rounds for the 
cancer dataset and 80 rounds for the stroke dataset. In the plots on 
the right side of Fig.  3G, PCA shows greater stability and a consistent 
improvement in accuracy throughout the rounds compared to t-SNE 
on the left side. The variability in the t-SNE boxplot indicates that the 
model performance is more sensitive to the randomness introduced 
by t-SNE. Models using PCA have an upward trend suggesting that 
the model can learn and generalize better with each round, which is 
less evident in t-SNE boxplots. The PCA reducer on the stroke dataset 
exhibits more stability and fewer outliers primarily due to the larger 
and more diverse dataset, which allows the model to generalize better. 
We also experimented with a different discretization method (LSA) as 
suggested by the authors, but the results were not as good. Therefore, 
we decided to stick with the default mapping setting (BIN). For more 
details, see Appendix  B.3. 
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Table 1
Spearman and Pearson correlation scores for t-SNE and PCA on 
Stroke and Cancer datasets. 
 Dataset Metric t-SNE PCA  
 Stroke Spearman 0.0640 0.7637 
 Pearson 0.0897 0.8806 
 Cancer Spearman 0.7720 0.9730 
 Pearson 0.7830 0.9896 

5. Discussion

5.1. Trade-offs between privacy and utility

Based on the results, we found that DP can have a significant 
negative impact on the performance of the models, especially with 
traditional machine learning models. Not only does DP lower the 
accuracy of the models, but it also causes instability within some of 
the models resulting in extreme peaks and troughs. For this study, 
we adopted server-side differential privacy with adaptive clipping, 
a method in which noise is added after aggregating client updates. 
This approach is appealing due to its relative ease of deployment and 
its tendency to preserve model accuracy more effectively than other 
DP configurations. However, it involves important trade-offs. One key 
trade-off is the trust assumption: server-side DP relies on the server to 
honestly apply noise and discard raw updates. In real-world applica-
tions with stricter privacy requirements, this assumption may not be 
acceptable. More fundamentally, server-side DP embodies the classic 
trade-off where stronger privacy requires injecting more noise, which 
can hinder learning by reducing accuracy, slowing convergence, and 
introducing instability. While adaptive clipping mitigates some of these 
effects, hyperparameter tuning remains difficult, as the ideal noise level 
varies across datasets and model architectures. Furthermore, deploying 
DP at scale introduces additional computational and communication 
overhead, particularly when integrated with secure aggregation or 
cryptographic enhancements. Consistent with findings by Geyer et al. 
it is possible we used an insufficient amount of participants [48]. Fed-
DeepInsight model performed well; however, as expected, the accuracy 
of the DP models dipped. Using a noise multiplier of 0.01 in this model 
resulted in an acceptable accuracy range. For the image model, the 
outcomes were less predictable. Although we anticipated similar results 
to the FedDeepInsight model due to the use of CNN architecture, the 
preliminary results shown in Fig.  2A showed significant fluctuations 
during training. These results highlight the need for careful design 
when applying differential privacy in federated learning. Balancing 
privacy and model utility remains challenging, especially in real-world 
settings. This raises the question of whether the privacy trade-off is 
justified when risks are low, but accuracy suffers. Ultimately, deploying 
differential privacy should depend on the specific privacy needs and 
operational context.

5.2. Model selection and performance analysis on image and tabular data 
in federated learning

Training the image data, FedAvg demonstrated overall better perfor-
mance, but FedYogi showed potential by achieving the highest accuracy 
in some rounds. We believe that with tuned hyper parameters, as 
suggested by Reddi et al. we could have achieved a more stable and 
better performing model [35]. FedProx performed substantially worse 
than the other two FL algorithms in terms of convergence and model 
stability. However, we believe that optimizing the proximal term (𝜇) 
in the dataset with a grid-search, rather than choosing an upper and 
lower bound, as illustrated in Appendix  A.1 & A.2, might have resulted 
in a different outcome.

For our model selection, we used CNNs to train the image data. 
The graph was less stable than we initially anticipated, which can be 
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Fig. 4. Trustworthiness score PCA vs t-SNE for Cancer (A) and Stroke (B) datasets.
attributed to the smaller dataset we used for training. Furthermore, we 
used a simple CNN model to train the image dataset, using a pre-trained 
or sophisticated model may improve the overall performance. Based on 
the literature and the results of the image data, we decided to do all 
tabular data investigations with FedAvg, which can serve as a baseline 
for the other FL-algorithm configurations [47].

For tabular data, we used two types of datasets to test the capa-
bilities of the proposed models. Starting with the cancer dataset, all 
models achieved high accuracy, above 90%. This high performance 
can be attributed to the fact that all columns, except the classification 
column, are numerical, which probably contributed to the model’s 
effectiveness. When comparing the models in their 5- and 20-client 
configurations, the 5-client setup demonstrated more stability with 
fewer fluctuations, especially in the early rounds. In addition, these 
models achieved convergence much faster than their 20-client counter-
parts. Traditional machine learning approaches exhibited overall less 
fluctuation compared to novel approaches utilizing neural networks. 
We believe that this instability in the novel approaches is due to the 
relatively small size of the dataset. FedDeepInsight used SqueezeNet 
1.1 CNN architecture. Comparing the results of FedDeepInsight and 
the CNN image, we observed that both models initially experience sig-
nificant fluctuations. Although these fluctuations decreased as rounds 
progressed, they persisted throughout the training. However, when 
FedDeepInsight was applied to the stroke dataset, which is larger, the 
fluctuations in the graph were considerably smaller. This adds more 
validity to our hypothesis that neural network models achieve greater 
stability when trained with more data or using pre-trained models in 
the context of federated learning. Continuing with the stroke dataset, 
which comprises mostly categorical columns, the models appeared 
more stable and converged faster, hence the reason we only ran 100 
rounds. XGBoost was the only model to achieve an accuracy in the 90% 
range. This suggests that XGBoost is also well suited for datasets with 
a higher proportion of categorical data.

We were initially unsure whether DeepInsight’s ability to capture 
the global structure of tabular data would translate well in a federated 
learning environment. Since this is the first time this method is being 
used in an FL context, we devised a specific methodology to test its 
applicability. By communicating with the authors of the original study, 
we received valuable guidance in setting up the test methodology [17]. 
First, we attempted to change the mapping method to LSA as suggested, 
but this approach did not generalize well. As shown in Appendix  B.3, 
the saved model did not generalize well even when using PCA as the 
reducer. In the study by Sharma et al. only nonlinear reducers such 
as t-SNE and k-PCA were used for the transformations [17]. Thus, we 
decided to test a linear reducer, PCA, to evaluate its performance in 
a federated learning environment. We discovered that the model with 
a PCA reducer could generalize well, but it requires that every detail, 
including the format of the dataset and the parameters of each client, 
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be exactly the same when transforming the tabular data. Even slight 
discrepancies, such as an incorrect random state of a set of pixels, 
would likely result in completely different and ineffective images. The 
PCA model of the stroke dataset generally improved, as is evident in 
the right-side of Fig.  3G. The larger size of the dataset allowed more 
images to be transformed, providing the model with more training data. 
This consequently enhanced the model’s generalization capabilities. As 
mentioned earlier, it is crucial that all the clients have consistent values 
in their settings. Ensuring that these values are kept hidden can add an 
extra layer of security and prevent potential data breaches mentioned 
by Kairouz et al. [24].

6. Conclusions

To meet our research objective, we conducted a comprehensive 
exploration of federated learning for medical data, focusing on both 
image and tabular data. Like an architect designing a building for 
functionality and safety, our blueprint outlines the key components 
and strategies needed to balance model performance with patient pri-
vacy. For image data, our results indicate that FedAvg is the most 
reliable aggregation algorithm, providing superior accuracy, stability, 
and convergence, and FedYogi is also viable with well-tuned hyper-
parameters. Although tested on a small dataset, we anticipate that 
larger datasets and pre-trained models could further improve perfor-
mance [43]. For privacy protection, we recommend Differential Privacy 
(DP) with calibrated noise multipliers and initial upper and lower 
bounds for stability.

For tabular data, central DP is not recommended for traditional 
machine learning models due to performance constraints. However, it 
can be effective for neural networks when sufficient data are available. 
FedAvg is recommended as the baseline aggregation algorithm. Among 
the machine learning models tested, XGBoost (XGB) delivered the 
highest performance when DP was not applied. In contrast, our in-
novative FedDeepInsight approach demonstrated strong and consistent 
performance, excelling even in DP-enabled scenarios. Additionally, Fed-
DeepInsight enhances security by protecting against attackers without 
access to model parameters.

Ultimately, FedDeepInsight emerges as a promising solution for 
secure, privacy-preserving federated learning in healthcare. Its poten-
tial to support collaborative, impactful medical research highlights its 
value in advancing the integration of federated learning into real-world 
medical applications.

6.1. Limitations & future work

Our study faced some minor limitations, most of which were due to 
hardware limitations. Firstly, working with image data posed signifi-
cant challenges as larger datasets required extensive computing power. 
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To account for this, we propose to better parallelize the framework 
and explore minimization in communication costs. Federated learning 
is a relatively new concept, and our existing computing resources were 
not fully compatible with the demands of these larger datasets. Beyond 
technical challenges, practical limitations also impact the application 
of federated learning in clinical settings. Medical institutions may lack 
the computing power for local model training, and regulatory or net-
work constraints may restrict model sharing and over-the-air updates. 
Furthermore, during our investigations with differential privacy, some 
models, such as Logistic Regression and TabNet, were fully compatible 
or functional.

Continuing with the theme of privacy, we plan to explore various 
forms of differential privacy, including local and client-side approaches. 
At this point, we can approach a possible hospital for testing and 
even possibly conduct a pilot study with patient data within the FAIR, 
GDPR compliance, and privacy guidelines required. In addition, we 
would like to perform experiments with cryptographic methods, such 
as homomorphic encryption [24]. These methods can enable compu-
tations on encrypted data without revealing raw information. Another 
topic of interest would be testing the limits of the models we used to 
train tabular data. Introducing sparse datasets and high-dimensional 
datasets will help us understand how these models handle data with 
many empty values or a large number of features. We anticipate that 
these experiments will reveal the strengths and weaknesses of the 
models in dealing with different types of complex data structures. For 
example, the generalizability of the DeepInsight model with a linear 
reducer like PCA might change depending on the dataset. Finally, in the 
future, we plan to evaluate these models using various metrics beyond 
accuracy, including precision, recall, and F1-score, as was done in the 
paper by Wilding et al. which use similar metrics to assess ultrasound 
images [49].
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Appendix A. FedProx configurations

A.1. Line plot - Proximal term configurations

See Fig.  A.5.

A.2. Density plot - Proximal term configurations

See Fig.  A.6.

Appendix B. FedDeepInsight

B.1. 2D-grid feature-to-pixel map

See Fig.  B.7.

B.2. Transformed images

See Fig.  B.8.

B.3. Discretization method (LSA)

See Fig.  B.9.

Appendix C. Dataset evaluation

See Table  C.2.

Fig. A.5. This plot illustrates the performance of three different proximal 
terms (𝜇) on the COVID-19 X-ray image dataset over multiple rounds. The 
proximal term settings are 0.1, 1, and 2, corresponding to the blue, green, 
and orange lines, respectively.
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Fig. A.6. This plot illustrates the performance of three different proximal terms (𝜇) on the COVID-19 X-ray image dataset. The density plot allows us to see the 
differences in performance more clearly by showing the distribution of accuracy values.

Fig. B.7. Feature-to-pixel kde plot for Stroke dataset (A) and Cancer dataset (B). The feature density matrix visualizes overall feature overlap by assigning each 
feature a pixel location. This transformation converts the high-dimensional data into a 2D grid, highlighting the position of pixels in the grid, lighter colors show 
higher density, while darker colors show decreasing density.

Fig. B.8. Constructed images where each pixel corresponds to a feature value, creating a visual representation of the tabular data. These images can be used 
with CNN architecture for model training.
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Fig. B.9. Boxplot - This plot illustrates the performance of the saved model on the synthetic cancer dataset using the LSA discretization method instead of the 
default BIN method. The model does not generalize as well with LSA compared to BIN. PCA was used as the dimensionality reducer.
Table C.2
Preliminary centralized evaluation comparing model performance with and without SMOTE. While the original 
dataset yields higher accuracy across all models, SMOTE significantly enhances performance on imbalanced 
classes. Logistic Regression (LR), which fails completely on the original dataset (precision and recall at 0%), 
shows strong gains with SMOTE. XGB improves dramatically in recall and F1-score, and DeepInsight benefits 
from balanced improvements in precision and recall. These results show SMOTE’s effectiveness in improving 
model robustness under class imbalance.
 Dataset Model Accuracy % Precision % Recall % F1-score % 
 SMOTE LR 82.00 80.00 84.00 82.00  
 SMOTE XGB 95.00 92.00 97.00 95.00  
 SMOTE DeepInsight 80.00 82.00 80.00 80.00  
 Original LR 95.00 0.00 0.00 0.00  
 Original XGB 95.00 22.00 39.00 6.00  
 Original DeepInsight 95.00 48.00 50.00 49.00  
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