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ARTICLE INFO ABSTRACT

Keywords: Medical data, hospital patient-specific data, are highly sensitive to privacy and are essential for research in
Federated learning the biomedical field. Although there are many new approaches to creating databases that ensure data must
Deepinsight be FAIR and GDPR compliant, these approaches require the intervention of secured data handlers. To address
;r[izuia;;zta this gap, this study investigates and designs a standardized Federated Learning (FL) architecture for medical
Arc}?itecture data. Specifically, we examine traditional and novel methods for preprocessing, handling, and utilizing such

Privacy protection data in FL. We develop “FedDeeplnsight”, a novel data transformation framework that enables tabular data

GDPR augmentation and transformation into image data prior to neural network training and FL. Additionally, we
analyze how the type of dataset influences the performance of federated learning algorithms and machine
learning models in terms of accuracy and efficiency. Our results indicate that FedAvg is the most reliable
aggregation algorithm, providing superior accuracy, stability, and convergence, and FedYogi is also viable with
well-tuned hyperparameters. For privacy protection, we recommend Differential Privacy (DP) with calibrated
noise multipliers and initial upper and lower bounds for stability. Ultimately, we emerge as a promising
solution for secure, privacy-preserving federation learning in healthcare.

1. Introduction

In recent years, machine learning algorithms are being used for
disease detection, drug discovery, and to improve the overall efficiency
of health care [1]. They require a substantial amount of data to perform
effectively. Unfortunately, in the field of healthcare, medical data
from patients that contain sensitive information is subject to privacy
regulations [2]. One of the most relevant is the General Data Protec-
tion Regulation (GDPR), a comprehensive data protection law in the
European Union that aims to protect the personal data and privacy of
individuals [3]. According to Recital 26 of the GDPR, if the data is truly
anonymized, it can be shared, meaning it must be processed in such a
way that individuals can no longer be identified, directly or indirectly.
Data anonymization techniques such as k anonymity, 1 diversity, and t
closeness offer some level of privacy protection, but often fall short of
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the rigorous standards of GDPR due to potential reidentification risks,
their inability to fully anonymize data in all contexts, and the evolving
nature of reidentification techniques [4,5]. Additionally, new methods
such as the FAIR compliant database can offer some solutions, but it still
requires careful implementation to ensure that all data usage complies
with legal and ethical standards [6,7]. Medical institutions, such as
the University Medical Center (UMC), are often labeled “data silos”
due to their restricted data sharing capabilities [8] and often require
many steps until research data is available [9-11]. To enable effective
use of data from such “data silos”, it is imperative that a privacy-
compliant approach and its relevant data processing tools are deployed
within the medical infrastructure. Federated learning (FL) is one such
novel approach to address these challenges. This framework has gained
traction due to its potential application in healthcare [12]. FL en-
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ables multiple parties to collaboratively train their machine learning
models without the need to share raw data externally. Using multiple
decentralized devices or servers, the models are trained with their
own local data [5]. After training the local models, the parameters
or gradients are transferred to a central model. The central model
uses aggregation methods such as Federated Averaging (FedAvg) to
combine these characteristics to improve the central model [13]. After
aggregation, the updated model is sent back to each local device. This
process continues to iterate, each iteration improving the models. This
gives computational models the ability to make use of these research
data and even train on these data without compromising privacy [14].

The current literature on FL lacks comprehensive studies on the
development of a standardized FL architecture tailored to medical
data. Research introducing a framework frequently lacks a thorough
examination of the specifics of complex designs. There is a limited
amount of literature focused on analyzing individual elements within a
framework that prioritizes safeguarding personal patient information.
When designing a Federated Learning Module (FLM), various com-
ponents such as data distribution, privacy mechanics, communication
architecture, FL algorithms, and model specifications need careful con-
sideration [13]. A significant disparity between the models available
for federated learning using imaging and tabular datasets is notice-
able. Although image datasets have been extensively studied, tabular
datasets, common in medical data, remain underutilized. Addressing
this research gap is essential, as much medical data, including omics
data, questionnaire reports, and medical summaries, is tabular in na-
ture. Existing studies are heavily focused on image data, leaving a
gap in the utilization of tabular data [15]. To address this gap, this
study will investigate traditional and novel methods for using tabular
data in federated learning. Specifically, we will explore two distinct
approaches: using TabNet, a neural network architecture designed for
tabular data. Additionally, we will convert tabular data into images
with FedDeeplnsight to potentially enhance the performance of the
model [16,17].

Our research aims to develop an effective federated learning ar-
chitecture for all types of medical data, achieving a balance between
model performance and patient privacy. We will evaluate machine
learning models, aggregation algorithms, and dataset types (image vs.
tabular) to determine their impact on accuracy and efficiency. Essential
security and data protection measures will be implemented, and we will
refine the architecture to create a blueprint for a Federated Learning
Module (FLM) for future applications.

2. Related work

Owing to heightened scrutiny and privacy regulations, medical in-
stitutions are prohibited from freely exchanging information with each
other [18]. This unique predicament of data isolation has resulted in
the terms ‘data silos’ or ‘data islands’ being attributed to hospitals and
similar institutions. To achieve optimal performance, machine learning
models require access to extensive and varied datasets. However, under
the present conditions within the medical domain, these models cannot
reach their full potential. Federated learning is proposed as a viable
solution to mitigate privacy concerns of data silo. It enables machine
learning models to be trained collaboratively on decentralized devices
or servers without the need to share sensitive data [19]. As a relatively
novel concept, there is a lack of comprehensive and standardized
solutions specifically created to address the challenges inherent in the
healthcare sector.

2.1. Data distribution

When designing a federated learning architecture, there are gener-
ally three approaches that can be used: Horizontal Federated Learning
(HFL), Vertical Federated Learning (VFL) and Federated Transfer Learn-
ing [18,20]. We will discuss only the first two approaches due to
resource limitations.
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2.1.1. Horizgontal federated learning

In Horizontal Federated Learning (HFL), each institution holds data
from the same feature space, but has a different sample space [20].
For instance, consider two hospitals: Hospital A and Hospital B. These
hospitals are located in different countries, and both are researching
prostate cancer and want to train machine learning models. Their
patients are unlikely to overlap, but the feature space will be the same.
As local data sets share a common feature space, the parties involved
can independently train their local models using the same architecture.
Updating the global model becomes straightforward by averaging the
parameters across all local models.

2.1.2. Vertical federated learning

Unlike HFL, in vertical federated learning (VFL), the parties possess
data with different characteristics, but there is usually overlap in the
sample space [20]. Consider two hospitals, Hospital A and Hospital
C, located in the same city. Hospital A has detailed patient records,
including demographic information and medical history, while lacking
specific diagnostic details, such as MRI images. On the other hand, Hos-
pital C specializes in diagnostic imaging, but has limited demographic
and medical information. Vertical Federated Learning involves the ag-
gregation of distinct features from multiple parties and the computation
of training loss and gradients in a privacy-preserving manner.

2.2. Data privacy

When it comes to FL, the preservation of privacy is of utmost impor-
tance [5,13]. Even if raw data are not shared, there is still a potential
risk of indirectly leaking sensitive data through exposure to information
when exchanging model parameters. Several techniques can be used
to protect sensitive information. A popular method to protect data
privacy is Differential Privacy (DP) [21]. There are several approaches
to implementing DP, but we will focus on central DP and local DP. Local
DP is applied on the client side before any information is sent to the
server, ensuring that updates sent to the server do not reveal any details
about the client data. In contrast, the server applies the central DP to
prevent the aggregated model from disclosing information about the
data of each client [22]. Central DP consists of two key components:
clipping client updates and adding noise to the aggregated model.
When noise or randomness is added to the learning process, individual
data points are protected. However, adding noise can negatively affect
the accuracy. The challenge lies in striking a balance between robust
privacy protection and maintaining the predictive performance of the
model.

2.3. Communication systems

Communication systems architecture play an important role in the
coordination of model updates between servers or devices, directly
affecting the effectiveness of FL. There are two types of communication
architecture: centralized and decentralized [5,23]. In a centralized
architecture also known as the ’Client-Server architecture’, all infor-
mation is passed through a central server which acts as a coordinating
entity. The central server manages the communication and synchro-
nization of the clients and trains the global model by aggregating all
the parameters of the local model from each device or client. Due
to its simplified nature, this architecture has been widely adopted in
FL studies [13]. However, there are concerns that the central server
becomes a vulnerability point because it contains all data [24].

A decentralized architecture, also known as the Peer-to-Peer archi-
tecture, does not rely on a central server. For this architecture, each
client communicates directly with the others in the network [23]. Each
client trains its model locally and updates its model using information
from other clients [5]. In this way, all data remain localized on individ-
ual devices, reducing the risk of data exposure. However, designing a
decentralized architecture can be challenging; coordinating communi-
cation and synchronization among multiple devices can become more
complex to implement [13].
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2.4. Machine learning models

Medical data collected from different hospitals may have different
distributions due to variations in the demographics of patients and
treatment protocols [25]. Also known as Non-Independent and Non-
Identically Distributed (non-1ID) data, dealing with this type of data is
challenging [24,26]. As such, research is imperative for handling this
type of data. Parametric and non-parametric ML models are often used
in FL. Due to the differences in their training mechanisms, both types
of model exhibit distinct behavior when dealing with non-IID data,
resulting in different performance.

2.4.1. Parametric models

Non-IID data can affect the performance of parametric models, espe-
cially in HFL systems due to label distribution imbalances. It can cause a
divergence between the local model and the global model [27]. Neural
networks (NN) are widely adopted parametric models, due to their
amazing performance in many areas, among them image classification
and speech recognition [28,29]. Linear models such as linear regression
and logistic regression are also commonly used in FL studies because
they are relatively easier to implement. However, due to the simplicity
of the models, individual private data is more likely to be reverse
engineered or leaked [30].

2.4.2. Non-parametric models

Non-parametric models such as Decision Trees, Gradient Boosting
Decision Trees (GBDT), and Random Forest are also commonly used in
the field of FL. Because of their good performance in classification and
regression tasks. GBDT has especially become popular in both HFL and
VFL systems [31]. However, a potential downside is that these models
can be computationally intensive.

2.5. Federated learning algorithms

There are various FL algorithms designed to aggregate the local pa-
rameters: FedAvg, FedProx, SCAFFOLD, FedMedian, FedOpt, FedYogi
and more [13,32-34]. Federated averaging, or FedAvg, is one of the
most widely adopted and straightforward algorithms, which works
by computing averages of the weights of local models by multiple
clients. FedProx addresses the challenges presented by non-IID data by
limiting local changes and has been shown to be effective in privacy
protection [33]. FedProx extends FedAvg by introducing a proximal
term y that can help stabilize the training process. FedYogi optimizes
the training process by addressing common challenges in federated
learning, such as communication efficiency, model convergence, and
robustness to data heterogeneity among different clients. Each algo-
rithm possesses unique properties, and this research aims to determine
the most suitable one for the module [35].

2.6. Data types

There are various types of data used in machine learning, but tabu-
lar data and image data stand out due to their widespread applications.
Understanding how these two types of data behave in the context of
federated leaning can provide a deeper insight into their strengths and
challenges in the medical field.

Image data has been favored in FL because of its complexity and
rich information content. It consists of pixel values arranged in grids,
making it inherently high-dimensional and unstructured. Convolutional
Neural Networks (CNNs) are the primary models used for image data
because they efficiently capture spatial hierarchies through convo-
lutional and pooling layers. However, the large size of the image
data imposes significant computational and communication costs. It
should be noted that ‘image’ data is a broad category, covering dif-
ferent modalities such as ultrasound, MRI and X-ray, each with distinct
characteristics and processing needs.
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Tabular data structured into rows and columns is common in the
field of healthcare. In FL, tabular data presents some challenges. One
major issue is the non-IID nature of data across different clients. This
heterogeneity can complicate the training process and requires special-
ized aggregation methods to ensure that the global model performs
well across diverse datasets. Although neural networks can be used for
tabular data, traditional models often perform better. The structured
nature and typically smaller size of tabular data compared to image
data result in lower computational and communication costs.

2.7. TabNet

TabNet, is a new approach designed to handle tabular data. Tra-
ditional deep learning models often struggle with tabular data due to
overparameterization and lack of appropriate inductive biases [16].
Typical deep learning models can learn from relational patterns from
images or text, which is not always the case for features in tabular data.
TabNet, on the other hand, utilizes a unique approach that combines
the strengths of tree-based learning and deep neural networks. This
hybrid method not only improves the model performance but also
enhances interpretability by calculating the importance of the features.
This process relies on several key components for the architecture to
function. Similarly to how a Decision Tree selects a feature, the feature
transformer and attentive transformer work together to select and pro-
cess features at each decision step. The feature transformer processes
the input features, while the attentive transformer generates masks that
highlight the most salient features. By focusing only on these selected
features, TabNet effectively identifies the decision boundaries on the
manifold. This approach is particularly well-suited for tabular data with
sparse characteristics. Similarly, TabNet’s Encoder operates by using
the output of the previous Encoder as feedback to update the feature
masking for the next Encoder. This structure functions as an ensemble
of encoders, mirroring the ensemble of trees in a tree-based model,
allowing for progressive refinement and improved learning outcomes.

2.8. Deeplnsight

Continuing the theme of using the capabilities of deep learning
methods to train tabular data, we encountered a variety of innovative
techniques during our research. One such method is Deeplnsight, a
technique that transforms tabular data into images, enabling the ap-
plication of deep learning models used in image processing [17]. The
first step is normalizing the tabular data to ensure that all features
are on a comparable scale, crucial for accurately representing feature
values as pixel intensities in images. The features are then mapped to
a 2D grid using dimensional reduction techniques such as t-SNE (t-
Distributed Stochastic Neighbor Embedding) or Principal Component
Analysis (PCA). When transforming the high-dimensional data into a
2D grid (image), each feature is assigned a pixel location. This process
can sometimes lead to multiple features being mapped to the same
pixel, causing collisions. These collisions can degrade the quality of
the transformation and the subsequent model’s ability to accurately
learn and generalize. After mapping, each row of the tabular dataset
is converted into a corresponding image, where each pixel value re-
flects the normalized value of a specific feature for that sample. This
creates a visual representation of the tabular instance, allowing CNNs
to process the data using their architectures. As mentioned earlier,
CNNs with their hierarchical feature extraction capabilities can learn
complex patterns and interactions within the data, potentially leading
to improved predictive performance compared to traditional methods.
Although this transformation enables effective learning, it complicates
interpretability since the spatial structure does not directly reflect the
original feature layout.
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3. Methodology
3.1. Data

For the image dataset, we decided to use a COVID-19 radiography
dataset containing X-ray images of the chest area. This dataset includes
three classes: positive cases of COVID-19, normal cases, and viral
pneumonia cases. The dataset consists of a total of 317 X-ray images,
with 66 designated as test images and 251 as training images. This
dataset was chosen because it is highly relevant for current medical
challenges, includes diverse and high-quality images, and is publicly
accessible on kaggle [36].

In the field of Federated Learning, little research has been done on
tabular data compared to image data [37]. To address this gap, we
used our models on different types of tabular data. Using Supabase
(Supabase LLC, USA, https://supabase.com/), we extracted and down-
loaded the tabular data in CSV format. The first dataset is a breast
cancer dataset obtained from the UCI Machine Learning Repository.
This dataset is derived from digitized images of fine needle aspirates
(FNA) of breast masses, describing the characteristics of the cell nuclei
present in the images, resulting in a dataset with 30 features. The class
distribution includes 357 benign cases and 212 malignant cases. This
data set was chosen due to its relatively small size, balanced class
distribution, and the presence of numerical values in all column of
characteristics [38]. In the preprocessing steps, we removed all white
spaces from the columns names to prepare the dataset for TabNet.
Additionally, we label encoded the classification column.

For the second tabular dataset, our objective was to predict stroke
occurrences based on various parameters of the patient. This dataset
is particularly relevant given the high global impact of stroke, as
highlighted by the World Stroke Organization (WSO), which states
that stroke is the second leading cause of death globally, responsible
for approximately 11% of total deaths [39]. The dataset comprises 12
columns, of which only two contain continuous values. The remain-
ing columns are binary or categorical. The ‘bmi’ column had many
missing values, so we replaced them with the median value within
each age category. Each category was defined by a 5-year age range.
Additionally, the categorical columns got encoded. The original dataset
is highly imbalanced, with 249 stroke cases out of 5110 total cases.
To address this imbalance, we employ SMOTE techniques to generate
synthetic samples during pre-processing. This approach has also been
explored in some federated learning studies to handle imbalanced data
across distributed clients [40]. A preliminary evaluation comparing
the original dataset and the SMOTE enhanced version is provided in
Appendix C.2, demonstrating improvements in precision, recall and F1-
score, which guided our decision to incorporate SMOTE in our pipeline.
All the tabular datasets mentioned were divided into an 80/20 train-test
split.

3.2. Approach

In terms of our approach, we examined the key components needed
for designing an FLM through simulation. We selected the pathways
that align closely with our design. For example, consider two pathways:
Pathway 1, an FL architecture without DP using FedAvg for parameter
aggregation, and Pathway 2, an architecture with DP using FedProx
for aggregation. From the literature, we assume that Pathway 1 will
have a high accuracy performance but is likely to leak patient data.
However, Pathway 2 is less likely to leak patient data, but accuracy
will suffer significantly [13,26,30]. If the initial selection did not meet
our requirement, we proceeded to the next pathway. Through trial and
error, we refined and identified the optimal FLM design adapted to
medical data. All of our experiments were conducted using Horizontal
Federated Learning (HFL) because it simplifies the process and is
well supported by the frameworks we are using. Our priority is to
select a flexible framework that offers security measures. In addition,
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it should be able to support different ML models and be scalable to
ensure smooth implementation in a real-world setting. Furthermore,
the framework should offer clear documentation that facilitates eas-
ier adoption by other parties. Based on these requirements, we have
chosen the appropriate framework and use the Snellius supercom-
puter (SURF, Amsterdam, Netherlands; https://www.surf.nl/en/dutch-
national-supercomputer-snellius) to run intensive tasks such as image
training.

3.3. Security method

The primary objective is to improve privacy and security. As men-
tioned earlier, we are integrating Differential Privacy and other novel
methods into the module. For this investigation, we used central dif-
ferential privacy because it provides a good balance between privacy
and utility. With the central differential privacy algorithm, we can
choose whether to use server-side or client-side cutting in the first
phase [41]. Each approach has its pros and cons. The first approach
has the advantage of enforcing a uniform clipping on all clients and
reducing communication overhead for clipping values. However, it
increases the computational load on the server. The second approach
reduces computational load, but there is a lack of centralized control.
We decided to use server-side clipping with adaptive clipping because
it allows for consistent and uniform application of clipping across
all clients. Adaptive clipping dynamically adjusts the clipping values
according to the data distribution, which can lead to better model
performance and more efficient privacy management.

In the paper by Andrew et al. which this algorithm is based, they
used noise multipliers (z) between 0.0 and 0.1 [42]. The results showed
that the performance of the model begins to decrease significantly with
values greater than z = 0.1. As such, we decided to use the smallest
noise multiplier after 0 and the largest noise multiplier in the paper.
Thus, we experimented with z = 0.01 and z = 0.1, to get a sense of a
lower and upper bound. If the model demonstrates good performance,
we consider adjusting the upper bound to further optimize the results.
While a full grid search or sensitivity analysis would provide a more
exhaustive view, our goal in this phase was to establish whether the
model retains acceptable performance under practical differential pri-
vacy settings. These two values were selected to represent meaningful
extremes within the empirically validated range, offering initial insight
into the algorithm’s robustness. If promising results are observed, we
consider these experiments a starting point for more granular tuning
in future work. The other parameters of the algorithm were left at
their default values as recommended by Andrew et al. All runs with
differential privacy were performed using FedAvg, the algorithm is
simple yet highly effective. Its straightforward approach makes it an
excellent baseline for evaluating differential privacy methods and can
serve as a starting point for researchers.

3.4. Model selection

3.4.1. CNNs

Selecting an appropriate ML model for FLM is a critical step in
ensuring the effectiveness and performance of the module. Our module
allows facilities to train various ML models based on the datasets. For
the image dataset we chose CNNs due to their proven success and
efficiency in handling image data. It is also possible to use a pre-
trained model, according to Kieffer et al. pre-trained models typically
achieve higher accuracy than those that are not pre-trained [43]. To
maintain simplicity, we implemented a standard CNN model consisting
of 2 convolutional layers, 2 max pooling layers, and 3 fully connected
layers. We set the number of local epochs to 5. As for FedDeeplnsight,
we used the SqueezeNet 1.1 architecture, consistent with the original
paper, to train the converted images. We will discuss its integration and
performance in greater detail in a later section.
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Comparison, respectively.

3.4.2. Logistic regression

As for the tabular datasets we chose four different models for the
investigations. Two traditional ML-models and two novel approaches.
The chosen models are Logistic Regression (LR), XGBoost (XGB), Tab-
Net, and Deeplnsight. We chose LR for its simplicity and interpretabil-
ity, linear models provide a strong baseline for comparison [44]. Re-
garding the hyper parameters, we chose L2 regularization as penalty to
help prevent overfitting. We enabled the warm start parameter to True
to retain the previous weights and avoid reinitializing them.

3.4.3. XGBoost

XGB was selected for its high performance and robustness; it is
known for outstanding results in tabular data. For the XGB model, we
used NVFlare to carry out the investigations. The XGB model in NVFlare
offers many options, such as data splits(uniform, linear, exponential,
squared) and tree-based(cyclic, bagging) training. After investigating
all the different configurations, we chose a uniform data split with the
bagging model. We used a uniform data split to maintain consistency
with the other models and use bagging because of its high accuracy.

3.4.4. TabNet

The new TabNet approach with the use of attention mechanisms and
interpretable embeddings for feature selection allows for end-to-end
learning, so the user can directly handle raw data, which can reduce
preprocessing needs. This can save time and simplify the workflow of a
researcher. We used the TabNet TensorFlow implementation [16]. For
the hyperparameters, we applied the settings provided in the GitHub
example. The only changes we made were dataset-specific parameters,
such as the list of column names and the number of classes.

3.4.5. FedDeeplnsight

Finally, we chose Deeplnsight for its innovative method of convert-
ing tabular data into images, enabling the use of CNNs to uncover
complex patterns and relationships that traditional models might miss.
To develop our method, FedDeepInsight, we implemented several steps.
In the original method, when the entire dataset is transformed at once,
the Deeplnsight image transformer captures the global structure of
the data. This results in a consistent mapping where relationships and
variances between all data points are considered; see Appendix B.1. If
the dataset is split into parts and each part is transformed separately,
the image transformer only captures the local structure of each part.
This can lead to different mappings, as the relationships between data
points in one part are not seen in the context of the other part. The
images generated from separate transformations may not be consistent,
affecting the ability of the model to generalize.

We reached out to the authors to inquire whether it was possible to
minimize the loss caused by feature-to-pixel mapping collisions. They
suggested that we could try changing the discretization method, even
though it had not been tested. Discretization methods are used to map
features (data points) to specific pixel locations. We decided to experi-
ment with Linear Sum Assignment (LSA) and Coordinate Binning (BIN)
as discretization methods. An in-depth explanation of these methods
can be found in the source code of Deeplnsight’s image transformer.
Subsequently, we examined the source code of two-dimensionality
reducers: t-SNE and PCA. The first reducer was used in their GitHub
example, and upon examining the t-SNE source code, we observed that
some randomness might still be involved even when setting a random
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state seed for reproducibility. This is important because in theory small
variations can generate completely different images. In centralized
training, this variability is acceptable. However, in a federated learning
environment, it is crucial that each client has the same parameters. As
such we decided to look into linear dimensionality reducers instead,
such as PCA, which were not investigated in the original paper [17].

Regarding the process of incorporating Deeplnsight into our FL
pipeline, the initial steps were similar to the original approach. First, we
normalized the data. Then, we created a reducer object for the image
transformer. As mentioned earlier, we experimented with t-SNE and
PCA reducers. Starting with t-SNE, the perplexity hyperparameter was
set to the number of features in the dataset minus one. The other settings
remained the same as in their example. For PCA, we set n_components
to 2. For both reducers, the random state was set to 42. Subsequently,
we initialized the image transformer with the reducer and set the pixel
size to 227 x 227. The image transformer was then trained using the
training data. Once the transformer was trained, it was applied to both
the training and test datasets to convert the tabular data into images.
Examples of transformed images are illustrated in Appendix B.2. The
transformed images were then converted into tensors. Tensor data
was trained with the SqueezeNet 1.1 model in our federated learning
pipeline [17].

3.5. FL algorithms selection

FedAvg is a widely used algorithm and operates by averaging the
model updates of the clients; as a foundational algorithm, it serves as a
standard benchmark in this study to compare it with other algorithms.
FedProx addresses data heterogeneity among clients and can mitigate
non-IID data by incorporating the proximal term. We conducted in-
vestigations with (x = 0.1, 1, 2), similar values were used at the
Flower baseline [41]. Finally, we decided to use FedYogi because it
has demonstrated superior performance on several benchmarks, often
outperforming other federated optimization algorithms in terms of
accuracy and convergence speed.

3.6. Evaluation

We evaluated the performance based on several factors including
accuracy per round, the impact of increasing the number of clients on
model performance, and the convergence behavior of the model under
different configurations. Specifically, we analyze how the accuracy
evolves with each training round and assess the convergence rate and
stability of the model as more clients participate in the training process.
As for our new method, FedDeeplnsight, we also need to evaluate
its viability in real-life settings. In a simulated federated learning
environment Fig. 1B, the tabular data to image transformation occurs
centrally, meaning that the transformation of the train set and the
test set is performed before distributing them to virtual clients. This
approach is not feasible in real-life settings and defeats the purpose of
federated learning. The process in a real world scenario is illustrated
in Fig. 1C. Earlier, we discussed the randomness that a dimensionality
reducer like t-SNE can introduce and how the mappings can differ if
the dataset is split and transformed separately. To evaluate the extent
of this randomness, we conducted model training on two reducers: t-
SNE and PCA. First, we applied the t-SNE and PCA transformations
to the train set and trained the data in our FLM, saving the trained
model from each round. After model training, we used the saved global
models to make predictions on synthetic datasets generated from the
two original datasets. By doing this, we can evaluate the predictions
from the synthetic dataset. Our aim is to see how well the global
FedDeeplInsight model can generalize to new data with the same format
and hyperparameters, simulating real-world scenarios. If the accuracy
remains consistent, it indicates minimal impact of randomness; if not,
this would highlight the challenges posed by its randomness and under-
score the need for careful consideration when choosing dimensionality
reduction techniques.
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To this end, we included the trustworthiness score as a comple-
mentary metric, measuring how well the local structure of the high-
dimensional data is preserved in the lower-dimensional space [45].
A high trustworthiness score indicates that the neighborhood rela-
tionships are maintained, which is particularly important in federated
learning scenarios where each client may operate on only a small local
subset of the data. In addition to local structure preservation, we also
evaluated the preservation of global structure using Pearson and Spear-
man correlation scores between pairwise distances in the original and
reduced spaces [46]. Spearman captures monotonic relationships and is
better suited for assessing structural similarity in nonlinear embeddings
such as t-SNE. While Pearson evaluates linear correspondence and is
often more informative in linear methods like PCA. By incorporating
these metrics into our evaluation, we gain a clearer understanding of
how the choice of dimensionality reducer impacts not just accuracy, but
also the consistency and reliability of data representation across clients.

4. Results
4.1. Image data

In this section, we present the performance analysis of three feder-
ated learning algorithms: FedAvg, FedProx and FedYogi on the COVID-
19 X-ray dataset (Fig. 2A). The accuracy of FedAvg shows a steady
increase initially, stabilizing around the 100th round. The accuracy
remains consistently high and stable throughout the remaining rounds,
with minor fluctuations around the 85%-90% range for both 5 & 20
clients. FedProx is less stable, showing significant fluctuations through-
out the rounds. Based on the density plot in Appendix A.2, we chose
u = 0.1 as the proximal term. Despite initial improvement, accu-
racy experiences frequent and pronounced drops. The accuracy varies
widely, generally between 60% and 90%. This is the case for both
client configurations. The FedYogi algorithm also shows substantial
variability, although it generally stabilizes after the initial rounds. The
accuracy with 5 clients fluctuates between 70% and 90%, with some
notable peaks reaching around 93%. With 20 clients, FedYogi shows
improved stability compared to the 5-client configuration. Although
there are still fluctuations, they are less pronounced, and the accuracy
generally stabilizes around the 80%-90% range after the initial rounds.
In the density plot of Fig. 2A, we can observe the differences in
the accuracy distribution of the three federated learning algorithms.
FedAvg has the highest density, indicating that it is the most reli-
able and stable algorithm in this context, consistently providing high
accuracy with minimal fluctuations. FedProx, despite its potential, is
hindered by significant instability, making it less suitable for consistent
performance. FedYogi & FedProx offers high potential, but requires
further optimization to ensure stability. It is evident from Appendix
A.1 & A.2, that careful selection of the i parameter can contribute to
FedProx performance.

4.2. Tabular data

To address the mentioned research gap, our investigations with
tabular data were more extensive, particularly with regard to Fed-
Deeplnsight. First, we compared the performances of the four proposed
models. The performance of the models is illustrated in Fig. 2B & 2C. In
the 5-client configuration with the cancer dataset, Logistic Regression
(LR) initially increases rapidly, reaching around 90%. The accuracy
stabilizes just after 50 rounds at around 88% with minimal fluctuations.
The accuracy of TabNet also increases rapidly in initial rounds, stabiliz-
ing around 92% after approximately 150 rounds. Performance remains
consistent with no fluctuations. The accuracy of FedDeepInsight shows
significant fluctuations in the early rounds but decreases significantly
after about 30 rounds. The model continues to fluctuate throughout the
process, with the delta between the fluctuations decreasing while the
accuracy increases, eventually reaching the heights of the XGB model
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with each color representing a distinct model. The round number is represented on a logarithmic scale. Right side: Swarm plot to illustrate the distribution of

accuracy values for each model.

and outperforming the other two models. The accuracy of XGBoost
(XGB) remains near-perfect, around 98%, throughout the rounds. For
the stroke data set, the accuracy of the logistic regression has the lowest
accuracy among all models at around 72%. The model converges after
round 16 with minor fluctuations during the rest of the training process.
The accuracy of TabNet achieves a higher accuracy than the previous
model, reaching a peak around 75%. The model remains consistent
throughout the training process with zero fluctuations. FedDeeplnsight
initially has the most unstable graph of all the models but quickly

surpasses the previous models in terms of accuracy before the first
10 rounds, increasing to around 84% accuracy. XGBoost (XGB) model
shows a steady increase in accuracy, maintaining around 95%, achiev-
ing the highest accuracy among all models. It is also the most stable
model.

In the 20-client configuration for the cancer dataset, the accuracy
of logistic regression shows a modest increase in the initial rounds
compared to the others, stabilizing after 160 rounds with minor fluctu-
ations between 90 and 93%. TabNet model experiences an initial rapid
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increase, which also stabilizes after 160 rounds between 90%-91%.
FedDeepInsight model shows significant early fluctuations, but the
delta of the fluctuations becomes minimal just before round 50. The
accuracy then climbs steadily, reaching 98%, outperforming XGB in
some rounds. XGBoost model still maintains a near-perfect accuracy
at 96% throughout the rounds, demonstrating consistent high per-
formance with the best stability. For the stroke dataset, the logistic
regression model stabilizes after 20 rounds around 72%. Performance
remains stable with minimal fluctuations. TabNet model shows a rapid
initial increase, stabilizing just before 20 rounds. Performance remains
stable from round 40, with no fluctuations, and accuracy converges
around 75%. FedDeepInsight model shows a gradual improvement in
stability and accuracy over the rounds. It outperforms the two models
mentioned above, achieving around 83% accuracy with minor fluc-
tuations. XGBoost model demonstrates a steady increase in accuracy,
with a value around 95%. Shows consistent and high performance
throughout the rounds with no fluctuations.

4.2.1. Analysis

The cancer dataset comprises numerical columns and contains 569
rows. From the graph, it is evident that all models achieve high accu-
racy, but exhibit fluctuations and minor instability particularly within
the first 100-150 rounds. The relatively small size of the dataset may
contribute to the instability observed in model training. Furthermore,
the numerical nature of the data likely contributes to the high perfor-
mance seen in these models. However, the stroke dataset comprises
mixed types, primarily categorical, and contains approximately 9700

rows. All models exhibit much greater stability with minimal fluctua-
tions, indicating that a larger dataset contributes to the stability and
convergence of federated learning training. In this dataset, XGBoost
outperforms the other models, maintaining the highest accuracy. The
mixed-type features in the dataset may contribute to the comparatively
lower accuracy observed in the other models. In both datasets, XGBoost
demonstrates exceptional performance and stability, making it a highly
reliable model for both cancer prediction and stroke predictions. Tab-
Net and logistic regression show consistent performance, but generally
lower accuracy compared to the other two models. Our FedDeeplnsight
model performed competitively, at times surpassing XGBoost in the
20-client configuration. Although both TabNet and FedDeeplnsight
leverage deep neural networks, FedDeeplnsight achieved higher peak
accuracy in all situations, which may justify its use when maximum
predictive performance is a priority especially in settings where deep
architectures can be supported.

4.3. Differential privacy results

For the tabular data, we show the results of implementing DP
with Logistic Regression and Deeplnsight. For image data, we used
convolutional neural networks (CNN). The results for both tabular and
image data are presented in Figs. 3D, 3E, and 3F. This comparison
allows us to observe how these models behave under DP and how
various configurations influence the results. The performance of the
logistic regression model under DP was poor across both datasets with
the selected configurations. In each scenario, the models with DP
exhibited high variability and did not show a clear improvement trend,
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with a mean hovering around the precision 50%. Furthermore, some
configurations were abruptly stopped due to errors, preventing them
from reaching the desired end-round. Based on overall performance,
this would not have made a significant difference.

In CNN model investigations that compared FL algorithms, FedAvg
demonstrated the most stable performance compared to FedYogi and
FedProx. According to the study by Korkmaz et al. FedAvg also showed
good overall performance, making it a reliable choice for federated
learning on medical datasets [47]. Thus, we decided to conduct the DP
investigations using FedAvg with a noise multiplier (z) of 0.1 & 0.01 .
The accuracy from the model is distributed sporadically between 25%
and 80%, with an average of around 45% for z = 0.01 and even lower
for z=0.1. Given the instability observed in the preliminary training
produced in Fig. 2A, similar trends were expected in the DP runs.

The DP implementation appears to work better with the Deeplnsight
model, demonstrating good accuracy across various configurations,
unlike the previous models. Examining Figs. 3D, 3E, and 3F, the model
using a noise multiplier of 0.01 shows that the cluster is concentrated
around 88%. In contrast, in the stroke dataset, the same noise multiplier
results in a cluster around 80%. A noise multiplier of 0.1 shows that the
cluster is more spread between 60%-75% in the cancer dataset, while
in the stroke dataset it is concentrated at 50%. Like the paper suggests:
a lower noise multiplier might allow for better model performance but
with less privacy [22].

4.4. Dimensionality reducers

In this section, we evaluate and compare PCA and t-SNE with
respect to both structure preservation and model accuracy. First, we
assess structure preservation by examining local and global fidelity.
Local structure preservation is measured using trustworthiness scores
across varying values of k [45]. As shown in Fig. 4 for the stroke
dataset, t-SNE excels at preserving local neighborhoods (high trustwor-
thiness at low k), but its performance declines rapidly as k increases,
indicating weaker global consistency. In contrast, PCA exhibits more
stable trustworthiness scores in k, suggesting better overall retention
of the global structure of the data.

To complement this analysis, we computed Spearman and Pearson
correlations between pairwise distances in the high-dimensional and
reduced spaces (Table 1). PCA consistently outperforms t-SNE on both
datasets, confirming its superior ability to preserve global relationships
and supporting the trends observed in the trustworthiness curves.

Next, we examine how these structure preservation differences
translate into downstream model accuracy. As discussed in the method-
ology, we are only interested in seeing how well the saved global
models can generalize to a new dataset. Therefore, we ran the models
up to the round where the preliminary accuracy in Figs. 2B & 2C
plateaued. Based on the figures, this occurs at 150 rounds for the
cancer dataset and 80 rounds for the stroke dataset. In the plots on
the right side of Fig. 3G, PCA shows greater stability and a consistent
improvement in accuracy throughout the rounds compared to t-SNE
on the left side. The variability in the t-SNE boxplot indicates that the
model performance is more sensitive to the randomness introduced
by t-SNE. Models using PCA have an upward trend suggesting that
the model can learn and generalize better with each round, which is
less evident in t-SNE boxplots. The PCA reducer on the stroke dataset
exhibits more stability and fewer outliers primarily due to the larger
and more diverse dataset, which allows the model to generalize better.
We also experimented with a different discretization method (LSA) as
suggested by the authors, but the results were not as good. Therefore,
we decided to stick with the default mapping setting (BIN). For more
details, see Appendix B.3.
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Table 1
Spearman and Pearson correlation scores for t-SNE and PCA on
Stroke and Cancer datasets.

Dataset Metric t-SNE PCA
Spearman 0.0640 0.7637

Stroke Pearson 0.0897 0.8806

Cancer Spearman 0.7720 0.9730
Pearson 0.7830 0.9896

5. Discussion
5.1. Trade-offs between privacy and utility

Based on the results, we found that DP can have a significant
negative impact on the performance of the models, especially with
traditional machine learning models. Not only does DP lower the
accuracy of the models, but it also causes instability within some of
the models resulting in extreme peaks and troughs. For this study,
we adopted server-side differential privacy with adaptive clipping,
a method in which noise is added after aggregating client updates.
This approach is appealing due to its relative ease of deployment and
its tendency to preserve model accuracy more effectively than other
DP configurations. However, it involves important trade-offs. One key
trade-off is the trust assumption: server-side DP relies on the server to
honestly apply noise and discard raw updates. In real-world applica-
tions with stricter privacy requirements, this assumption may not be
acceptable. More fundamentally, server-side DP embodies the classic
trade-off where stronger privacy requires injecting more noise, which
can hinder learning by reducing accuracy, slowing convergence, and
introducing instability. While adaptive clipping mitigates some of these
effects, hyperparameter tuning remains difficult, as the ideal noise level
varies across datasets and model architectures. Furthermore, deploying
DP at scale introduces additional computational and communication
overhead, particularly when integrated with secure aggregation or
cryptographic enhancements. Consistent with findings by Geyer et al.
it is possible we used an insufficient amount of participants [48]. Fed-
Deeplnsight model performed well; however, as expected, the accuracy
of the DP models dipped. Using a noise multiplier of 0.01 in this model
resulted in an acceptable accuracy range. For the image model, the
outcomes were less predictable. Although we anticipated similar results
to the FedDeeplnsight model due to the use of CNN architecture, the
preliminary results shown in Fig. 2A showed significant fluctuations
during training. These results highlight the need for careful design
when applying differential privacy in federated learning. Balancing
privacy and model utility remains challenging, especially in real-world
settings. This raises the question of whether the privacy trade-off is
justified when risks are low, but accuracy suffers. Ultimately, deploying
differential privacy should depend on the specific privacy needs and
operational context.

5.2. Model selection and performance analysis on image and tabular data
in federated learning

Training the image data, FedAvg demonstrated overall better perfor-
mance, but FedYogi showed potential by achieving the highest accuracy
in some rounds. We believe that with tuned hyper parameters, as
suggested by Reddi et al. we could have achieved a more stable and
better performing model [35]. FedProx performed substantially worse
than the other two FL algorithms in terms of convergence and model
stability. However, we believe that optimizing the proximal term ()
in the dataset with a grid-search, rather than choosing an upper and
lower bound, as illustrated in Appendix A.1 & A.2, might have resulted
in a different outcome.

For our model selection, we used CNNs to train the image data.
The graph was less stable than we initially anticipated, which can be
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attributed to the smaller dataset we used for training. Furthermore, we
used a simple CNN model to train the image dataset, using a pre-trained
or sophisticated model may improve the overall performance. Based on
the literature and the results of the image data, we decided to do all
tabular data investigations with FedAvg, which can serve as a baseline
for the other FL-algorithm configurations [47].

For tabular data, we used two types of datasets to test the capa-
bilities of the proposed models. Starting with the cancer dataset, all
models achieved high accuracy, above 90%. This high performance
can be attributed to the fact that all columns, except the classification
column, are numerical, which probably contributed to the model’s
effectiveness. When comparing the models in their 5- and 20-client
configurations, the 5-client setup demonstrated more stability with
fewer fluctuations, especially in the early rounds. In addition, these
models achieved convergence much faster than their 20-client counter-
parts. Traditional machine learning approaches exhibited overall less
fluctuation compared to novel approaches utilizing neural networks.
We believe that this instability in the novel approaches is due to the
relatively small size of the dataset. FedDeeplnsight used SqueezeNet
1.1 CNN architecture. Comparing the results of FedDeepInsight and
the CNN image, we observed that both models initially experience sig-
nificant fluctuations. Although these fluctuations decreased as rounds
progressed, they persisted throughout the training. However, when
FedDeeplInsight was applied to the stroke dataset, which is larger, the
fluctuations in the graph were considerably smaller. This adds more
validity to our hypothesis that neural network models achieve greater
stability when trained with more data or using pre-trained models in
the context of federated learning. Continuing with the stroke dataset,
which comprises mostly categorical columns, the models appeared
more stable and converged faster, hence the reason we only ran 100
rounds. XGBoost was the only model to achieve an accuracy in the 90%
range. This suggests that XGBoost is also well suited for datasets with
a higher proportion of categorical data.

We were initially unsure whether Deeplnsight’s ability to capture
the global structure of tabular data would translate well in a federated
learning environment. Since this is the first time this method is being
used in an FL context, we devised a specific methodology to test its
applicability. By communicating with the authors of the original study,
we received valuable guidance in setting up the test methodology [17].
First, we attempted to change the mapping method to LSA as suggested,
but this approach did not generalize well. As shown in Appendix B.3,
the saved model did not generalize well even when using PCA as the
reducer. In the study by Sharma et al. only nonlinear reducers such
as t-SNE and k-PCA were used for the transformations [17]. Thus, we
decided to test a linear reducer, PCA, to evaluate its performance in
a federated learning environment. We discovered that the model with
a PCA reducer could generalize well, but it requires that every detail,
including the format of the dataset and the parameters of each client,
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be exactly the same when transforming the tabular data. Even slight
discrepancies, such as an incorrect random state of a set of pixels,
would likely result in completely different and ineffective images. The
PCA model of the stroke dataset generally improved, as is evident in
the right-side of Fig. 3G. The larger size of the dataset allowed more
images to be transformed, providing the model with more training data.
This consequently enhanced the model’s generalization capabilities. As
mentioned earlier, it is crucial that all the clients have consistent values
in their settings. Ensuring that these values are kept hidden can add an
extra layer of security and prevent potential data breaches mentioned
by Kairouz et al. [24].

6. Conclusions

To meet our research objective, we conducted a comprehensive
exploration of federated learning for medical data, focusing on both
image and tabular data. Like an architect designing a building for
functionality and safety, our blueprint outlines the key components
and strategies needed to balance model performance with patient pri-
vacy. For image data, our results indicate that FedAvg is the most
reliable aggregation algorithm, providing superior accuracy, stability,
and convergence, and FedYogi is also viable with well-tuned hyper-
parameters. Although tested on a small dataset, we anticipate that
larger datasets and pre-trained models could further improve perfor-
mance [43]. For privacy protection, we recommend Differential Privacy
(DP) with calibrated noise multipliers and initial upper and lower
bounds for stability.

For tabular data, central DP is not recommended for traditional
machine learning models due to performance constraints. However, it
can be effective for neural networks when sufficient data are available.
FedAvg is recommended as the baseline aggregation algorithm. Among
the machine learning models tested, XGBoost (XGB) delivered the
highest performance when DP was not applied. In contrast, our in-
novative FedDeeplInsight approach demonstrated strong and consistent
performance, excelling even in DP-enabled scenarios. Additionally, Fed-
Deeplnsight enhances security by protecting against attackers without
access to model parameters.

Ultimately, FedDeeplnsight emerges as a promising solution for
secure, privacy-preserving federated learning in healthcare. Its poten-
tial to support collaborative, impactful medical research highlights its
value in advancing the integration of federated learning into real-world
medical applications.

6.1. Limitations & future work
Our study faced some minor limitations, most of which were due to

hardware limitations. Firstly, working with image data posed signifi-
cant challenges as larger datasets required extensive computing power.
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To account for this, we propose to better parallelize the framework
and explore minimization in communication costs. Federated learning
is a relatively new concept, and our existing computing resources were
not fully compatible with the demands of these larger datasets. Beyond
technical challenges, practical limitations also impact the application
of federated learning in clinical settings. Medical institutions may lack
the computing power for local model training, and regulatory or net-
work constraints may restrict model sharing and over-the-air updates.
Furthermore, during our investigations with differential privacy, some
models, such as Logistic Regression and TabNet, were fully compatible
or functional.

Continuing with the theme of privacy, we plan to explore various
forms of differential privacy, including local and client-side approaches.
At this point, we can approach a possible hospital for testing and
even possibly conduct a pilot study with patient data within the FAIR,
GDPR compliance, and privacy guidelines required. In addition, we
would like to perform experiments with cryptographic methods, such
as homomorphic encryption [24]. These methods can enable compu-
tations on encrypted data without revealing raw information. Another
topic of interest would be testing the limits of the models we used to
train tabular data. Introducing sparse datasets and high-dimensional
datasets will help us understand how these models handle data with
many empty values or a large number of features. We anticipate that
these experiments will reveal the strengths and weaknesses of the
models in dealing with different types of complex data structures. For
example, the generalizability of the Deeplnsight model with a linear
reducer like PCA might change depending on the dataset. Finally, in the
future, we plan to evaluate these models using various metrics beyond
accuracy, including precision, recall, and F1-score, as was done in the
paper by Wilding et al. which use similar metrics to assess ultrasound
images [49].
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Appendix A. FedProx configurations

A.1. Line plot - Proximal term configurations
See Fig. A.5.

A.2. Density plot - Proximal term configurations
See Fig. A.6.

Appendix B. FedDeepInsight

B.1. 2D-grid feature-to-pixel map
See Fig. B.7.

B.2. Transformed images
See Fig. B.8.

B.3. Discretization method (LSA)
See Fig. B.9.

Appendix C. Dataset evaluation
See Table C.2.

COVID-19 X-RAY FedProx Accuracies 5 Clients Over Rounds
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Fig. A.5. This plot illustrates the performance of three different proximal
terms (x) on the COVID-19 X-ray image dataset over multiple rounds. The
proximal term settings are 0.1, 1, and 2, corresponding to the blue, green,
and orange lines, respectively.
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Density Plot of COVID-19 X-RAY FedProx Accuracies
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Fig. A.6. This plot illustrates the performance of three different proximal terms (x) on the COVID-19 X-ray image dataset. The density plot allows us to see the
differences in performance more clearly by showing the distribution of accuracy values.
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Fig. B.7. Feature-to-pixel kde plot for Stroke dataset (A) and Cancer dataset (B). The feature density matrix visualizes overall feature overlap by assigning each
feature a pixel location. This transformation converts the high-dimensional data into a 2D grid, highlighting the position of pixels in the grid, lighter colors show
higher density, while darker colors show decreasing density.
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Fig. B.8. Constructed images where each pixel corresponds to a feature value, creating a visual representation of the tabular data. These images can be used
with CNN architecture for model training.
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Fig. B.9. Boxplot - This plot illustrates the performance of the saved model on the synthetic cancer dataset using the LSA discretization method instead of the
default BIN method. The model does not generalize as well with LSA compared to BIN. PCA was used as the dimensionality reducer.

Table C.2

Preliminary centralized evaluation comparing model performance with and without SMOTE. While the original
dataset yields higher accuracy across all models, SMOTE significantly enhances performance on imbalanced
classes. Logistic Regression (LR), which fails completely on the original dataset (precision and recall at 0%),
shows strong gains with SMOTE. XGB improves dramatically in recall and Fl-score, and Deeplnsight benefits
from balanced improvements in precision and recall. These results show SMOTE’s effectiveness in improving

model robustness under class imbalance.

Dataset Model Accuracy % Precision % Recall % F1-score %
SMOTE LR 82.00 80.00 84.00 82.00
SMOTE XGB 95.00 92.00 97.00 95.00
SMOTE Deeplnsight 80.00 82.00 80.00 80.00
Original LR 95.00 0.00 0.00 0.00
Original XGB 95.00 22.00 39.00 6.00
Original Deeplnsight 95.00 48.00 50.00 49.00
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